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Abstract. The D-wave state component of the neutron-proton bound state in the deuteron is calculated
in the Nambu-Jona-Lasinio model of light nuclei—the relativistically covariant quantum field-theoretic
approach to the description of low-energy nuclear forces. The theoretical value of the fraction of the D-
wave state relative to the S-wave state is equal to nq = 0.0238. This agrees well with the phenomenological
value nq = 0.0256 + 0.0004 quoted by Kamionkowski and Bahcall (Astrophys. J. 420, 884 (1994)).

PACS. 11.10.Ef Lagrangian and Hamiltonian approach — 13.75.Cs Nucleon-nucleon interactions (including
antinucleons, deuterons, etc.) — 14.20.Dh Protons and neutrons — 21.30.Fe Forces in hadronic systems and

effective interactions

1 Introduction

The Nambu-Jona-Lasinio model of light nuclei or dif-
ferently the nuclear Nambu-Jona-Lasinio (NNJL) model
suggested in [1-3] represents a relativistically covariant
quantum field-theoretic approach to the description of
low-energy properties and interactions of the deuteron
and light nuclei. The NNJL model is fully motivated by
QCD [1]. The deuteron appears in the nuclear phase of
QCD as a neutron-proton collective excitation, the Cooper
np-pair, induced by a phenomenological local four-nucleon
interaction. The NNJL model describes low-energy nu-
clear forces in terms of one-nucleon loop exchanges pro-
viding a minimal transfer of nucleon flavours from initial
to final nuclear states and accounting for contributions of
nucleon-loop anomalies which are completely determined
by one-nucleon loop diagrams. The dominance of contri-
butions of nucleon-loop anomalies to effective Lagrangians
of low-energy nuclear interactions is justified in the large
N¢ expansion, where N¢ is the number of quark colours.

Nowadays there is a consensus concerning the exis-
tence of non-nucleonic degrees of freedom in nuclei [4].
The non-nucleonic degrees of freedom can be described
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either within QCD in terms of quarks and gluons [5] or
in terms of mesons and nucleon resonances [6]. In the
NNJL model the non-nucleonic degrees of freedom of nu-
clei have been investigated in terms of the A(1232) reso-
nance and calculated the contribution of the AA compo-
nent to the deuteron [2]. The obtained result P(AA) =
0.3% agrees well with the experimental upper bound
P(AA) < 0.4% [7] and other theoretical estimates [4].

As has been shown in [3], the NNJL model describes
well the low-energy nuclear forces for electromagnetic and
weak nuclear reactions with the deuteron of astrophysical
interest such as the neutron-proton radiative capture n +
p — D+, the solar proton burning p+p — D+et + v,
the pep-process p+e~ + p — D + v, and reactions of
the disintegration of the deuteron by neutrinos and anti-
neutrinos caused by charged vo+D — e~ +p+p, Ve+D —
et +n+n and neutral ve(7) + D — ve(ve) + 1 + p weak
currents.

The important problem which has not been jet clar-
ified in the NNJL model is related to the value of the
contribution of the D-wave state to the wave function of
the deuteron. In this paper we fill this blank. In sect. 2 we
calculate the contribution of the D-wave state to the wave
function of the deuteron. We use a relativistically covari-
ant partial-wave analysis developed by Anisovich et al. [8]
for the description of nucleon-nucleon scattering. We ob-
tain the fraction of the D-wave state of the deuteron wave
function relative to the S-wave one equal to ng = 0.0238.
This agrees well with the value nqg = 0.0256 + 0.0004
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quoted by Kamionkowski and Bahcall [9]' who used this
parameter for the phenomenological description of the re-
alistic wave function of the deuteron in connection with
the calculation of the astrophysical factor Sp,(0) for the
solar proton burning p + p — D +e™ + v, in the po-
tential model approach. In the Conclusion we discuss the
obtained result.

2 The D-wave state component of the
deuteron

We would carry out the calculation of the value of the
D-wave state contribution to the wave function of the
deuteron in terms of the amplitude of the transition
n+p — D. We show that the neutron-proton pair couples
to the deuteron in both the S-wave state and the D-wave
state with the fraction of the D-wave state agreeing with
low-energy nuclear phenomenology.

In the NNJL model the phenomenological Lagrangian
of the npD interaction is defined by [1]

Lupp(z) = —igy[p*(z)y"n(z) — n®(z)y"p(z)] D} (2)

5T (@) n(e) — i @) p(@) DL, 0
+h.c., (2.1)

where DL(ac), n(z) and p(z) are the interpolating fields
of the deuteron, the neutron and the proton, D}, (z) =

9D} (x) — 8,D},(x) is the deuteron field strength. The
phenomenological coupling constant gy is related to
the electric quadrupole moment of the deuteron Qp =
0.286 fm?, g3 = 272QpM3Z [1], where My = 940 MeV is
the nucleon mass. The coupling constants gy and gr are
connected by the relation [1]

_ﬁ
gr = 89\/,

which is valid at leading order in the large N¢ expan-
sion [1].

The amplitude of the transition n + p — D is deter-
mined by

<kD7 >\D|£npD(0)|kp7 Op; kna Un> =
M(n(kn7 Un) + p(kp7 Up) - D(kD7 AD))
\/QEDV2EHV2EPV

(2.2)

, (2.3)

where (Ep,kp, Ap), (Ep, kp,0p) and (Ey, ky, 0n) are en-
ergies, 4-momenta and polarizations of the deuteron, the
proton and the neutron, respectively, V' is a normalization
spatial volume. The wave functions of the initial and final
states of the transition n + p — D are given by

|kps 0ps kiny on) = a;(kpvap) aﬁ(kn>0n)|0>7

{(kp, Ap| = (0lap (kp, Ap), (2.4)

L The value 1q = 0.025640.0004 was taken by Kamionkowski
and Bahcall from ref. [10].

where af(kp,0p) and af (kn,on) are creation operators
of the proton and the neutron, ap(kp,Ap) is the anni-
hilation operator of the deuteron and |0) is a vacuum
wave function. The relativistically invariant amplitude

M (n(ky, 0n) + pkp, 0p) — D(kp, Ap)) reads
M(n(kn, Un) + p(kp, 0'p> — D(l{?D7 AD)) = e*”(k‘D7 )\D)
X {2igv[dc(kn, on)Ywt(kp, op)]

2igT
My

[ (ks 00) 7 (ks )] (i + )} (2:5)
where u¢(ky, o) and u(k,,op) are the bispinorial wave
functions of the neutron and the proton with 4-momenta
kn, k, and polarizations oy, op; € (kp, Ap) is a 4-vector
of the polarization of the deuteron with 4-momentum kp
and polarization Ap. The 4-momenta kp, k, and k, are
related by kp = k, 4k, due to conservation of energy and
momentum.

As has been shown by Anisovich et al. [8], the neutron-
proton densities describing the S- and D-wave states of a
neutron-proton pair are equal to

@, (>S1; 00, 0p) = [u€(kn, 0n)S,ulkp, 0p)]

WV(BDUUnaUp) = [u®(kn, on)Dyulky, 0p)] s (2.6)

where S, and D,, are relativistically covariant operators
of the projection onto the S-wave and the D-wave state,
respectively [8]:

S _L L_L
IJ_\/% T 2MN+\/§ ’
2 |1 2 L
V:@ Z(4MN7$)7U 7(MN+\/§)I€D . (2'7)

Here P =k + kn, k = % (ky — kn), s = P?, P-k =0 and
. P,

Ty = — P

: (2.8)

The neutron-proton densities equations (2.6) are normal-
ized by the condition [8]

% / tr{ L, (kp+ M) L' (— ko -+ M)} (270) 26 (P =k — k)

y d®k, Bk,
(2m)32E, (27)32E,

pL(S) ) (29)
where L,, = S, or Dy, the factor 3 in the denominator of
the Lh.s. describes the number of the states of a neutron-
proton density with a total momentum J =1, 2J+1 =3,
and ps(s) and pp(s) amount to

1/2
1 [s—4M3
ps(s) —(—N> ;

:87r s

5/2
_ 1 5—4]\413I /
T 8w s '

po(8s) (2.10)
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In the center-of-mass frame of the neutron-proton pair the
densities equations (2.6) are equal to

Ep()(351;0'n,0'p) = [u®(kn, on)Soulkp, 0p)] =0,

U (*St; o, 0p) = [(kn, 00)Sulky, 0p)] =

% 1 (00)F (o)

!PO(3D1;UH,UP) = [u®(kn, on)Dou(ky,0p)] =0,
U (*Dy;0n,0p) = [0 (ka, 00) Dulky, 0p)] =

(2.11)

where @ = k/y/k2+ M2 and k are the relative velocity

and 3-momentum of the neutron-proton pair, ¢y, (oy) and
¢p(op) are spinorial wave functions of the neutron and
the proton, respectively. It is obvious that the densities
equations (2.11) describe the neutron-proton pair in the
S- and D-wave states with a total spin S = 1 and a total
momentum J = 1.

The neutron-proton densities equations (2.11) are nor-
malized by

1 B B
§ Z Z JIT(BSHO’H’UP) : q/(gsl;amap) = 17
on==%1/20,=%1/2

1 - -
5 Y FCDiowey) FCDiow0p) =
on=%1/20,=%1/2

2
4M?Z
vt = (1— N) .
s

We would carry out the decomposition of the neutron-
proton densities in the amplitude equation (2.5) into the
densities with a certain orbital momentum at leading or-
der in the large N¢ expansion [1-3]. This would allow to
consider the neutron and the proton as free particles obey-
ing free equations of motion

(2.12)

¢ (ky, 00) (kn + Mx) = 0,

(kp — Mn) u(kp,0p) =0. (2.13)
In order to express the neutron-proton densities in the
amplitude equation (2.5) in terms of the projection op-
erators equations (2.7), first we have to exclude the term
containing o,,,,. This can be carried out by using Gordon’s
identity

- (kn + Ep)
[u (kn, 0n) 0wk, 0p)] WNP =

ky

[0 Cens o)y ulep, 0p)] [0 (o, 0w ulp, 0p))- (2.14)

Substituting eq. (2.14) in eq. (2.5) we get

M (n(ky, on) + plkp, 0p) — D(kp, Ap)) =
2i(gv + 2gt1) " (kp, Ap)

x {[dc(kn,an)%u(kpyop)]

2gT kl/

—_ 2.15
gv + 291 My (2.15)

[ 0Julky, )] .

In terms of S, and D, vectors, 'ylf- and k, are determined
by

2v/2 2 s

L= (M , —~————D,

W= g M+ Vs)S 32My + 5 7
1 1

k, = —— (AME —5)S, — = sD, . 2.16
3\/5( N S) 35 ( )

Substituting eq. (2.16) into eq. (2.15) and taking into ac-
count that [u®(ky, on)Pu(kp,0p)] = 0, we obtain

M (n(kn, on) + p(kp, 0p) — D(kp, Ap)) =
4v2i(gy + 2g1) Mx €*” (kp, Ap)
X {[uc(kn, 00)Syu(ky, o))
+1a [u(kn, on)Dyulky, op)]} =
4V2i(gv + 291) Mx € (kp, Ap)

[Lpu(g‘gl;‘jmo’p) + N4 QII/(SDI;UI};UP)] ) (2~17)

where 7q describes the fraction of the D-wave state in the
wave function of the deuteron. It is equal to

_ 1 2g9r—gv
3v2 291 + gv

For the derivation of egs. (2.17) and (2.18) we have set
s = M2 and neglected the contribution of the binding
energy of the deuteron in comparison with a nucleon mass
My. This means that 4MZ — s = 0 when compared with
M2,

Using the relation equation (2.2), the parameter ng
takes the value

7d (2.18)

_ L VB2
NG RV

This agrees well with the value 7q = 0.0256 & 0.0004 that
was used in low-energy nuclear phenomenology for the de-
scription of the realistic wave function of the deuteron
within the potential model approach [9,10].

=0.0238. (2.19)

3 Conclusion

We have shown that the NNJL model describes well in
agreement with low-energy nuclear phenomenology [10]
such a fine structure of the deuteron as a contribution of
the D-wave state. We have carried out the calculation of
the fraction of the D-wave state to the wave function of the
deuteron at leading order in the large N¢ expansion [1].
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This has allowed to treat the neutron and the proton as
free particles on-mass shell [1-3] obeying free equations
of motion. To the decomposition of the amplitude of the
transition n + p — D into the neutron-proton quantum
field configurations having certain orbital momenta and
corresponding to the S- and D-wave states, respectively,
we have applied a relativistically covariant partial-wave
analysis invented by Anisovich et al. [8] for the description
of nucleon-nucleon scattering with nucleon-nucleon pairs
coupled in the states with certain orbital momenta.

The theoretical value of the D-wave state fraction in
the wave function of the deuteron nq = 0.0238 calculated
in the NNJL model agrees well with low-energy nuclear
phenomenology giving 79 = 0.0256 £+ 0.0004 [10]. The
former was quoted by Kamionkowski and Bahcall [9] for
the parameterization of the realistic wave function of the
deuteron in connection with the calculation of the astro-
physical factor Sy, (0) for the solar proton burning p + p
— D + et + v,. The calculation of the contribution of the
D-wave state fraction of the wave function of the deuteron
in agreement with low-energy nuclear phenomenology tes-
tifies that the NNJL model describes to full extent low-
energy tensor nuclear forces playing an important role in
low-energy nuclear physics on the whole and for the exis-
tence of the deuteron in particular [11].

One of the authors (V. Ivanova) is grateful to her supervisor
Prof. E. A. Choban for discussions.
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