
Eur. Phys. J. A 12, 87–90 (2001) THE EUROPEAN
PHYSICAL JOURNAL A
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Abstract. The D-wave state component of the neutron-proton bound state in the deuteron is calculated
in the Nambu-Jona-Lasinio model of light nuclei—the relativistically covariant quantum field-theoretic
approach to the description of low-energy nuclear forces. The theoretical value of the fraction of the D-
wave state relative to the S-wave state is equal to ηd = 0.0238. This agrees well with the phenomenological
value ηd = 0.0256 ± 0.0004 quoted by Kamionkowski and Bahcall (Astrophys. J. 420, 884 (1994)).

PACS. 11.10.Ef Lagrangian and Hamiltonian approach – 13.75.Cs Nucleon-nucleon interactions (including
antinucleons, deuterons, etc.) – 14.20.Dh Protons and neutrons – 21.30.Fe Forces in hadronic systems and
effective interactions

1 Introduction

The Nambu-Jona-Lasinio model of light nuclei or dif-
ferently the nuclear Nambu-Jona-Lasinio (NNJL) model
suggested in [1–3] represents a relativistically covariant
quantum field-theoretic approach to the description of
low-energy properties and interactions of the deuteron
and light nuclei. The NNJL model is fully motivated by
QCD [1]. The deuteron appears in the nuclear phase of
QCD as a neutron-proton collective excitation, the Cooper
np-pair, induced by a phenomenological local four-nucleon
interaction. The NNJL model describes low-energy nu-
clear forces in terms of one-nucleon loop exchanges pro-
viding a minimal transfer of nucleon flavours from initial
to final nuclear states and accounting for contributions of
nucleon-loop anomalies which are completely determined
by one-nucleon loop diagrams. The dominance of contri-
butions of nucleon-loop anomalies to effective Lagrangians
of low-energy nuclear interactions is justified in the large
NC expansion, where NC is the number of quark colours.

Nowadays there is a consensus concerning the exis-
tence of non-nucleonic degrees of freedom in nuclei [4].
The non-nucleonic degrees of freedom can be described
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either within QCD in terms of quarks and gluons [5] or
in terms of mesons and nucleon resonances [6]. In the
NNJL model the non-nucleonic degrees of freedom of nu-
clei have been investigated in terms of the ∆(1232) reso-
nance and calculated the contribution of the ∆∆ compo-
nent to the deuteron [2]. The obtained result P (∆∆) =
0.3% agrees well with the experimental upper bound
P (∆∆) < 0.4% [7] and other theoretical estimates [4].

As has been shown in [3], the NNJL model describes
well the low-energy nuclear forces for electromagnetic and
weak nuclear reactions with the deuteron of astrophysical
interest such as the neutron-proton radiative capture n +
p → D+γ, the solar proton burning p+p → D+e+ + νe,
the pep-process p + e− + p → D + νe and reactions of
the disintegration of the deuteron by neutrinos and anti-
neutrinos caused by charged νe+D → e−+p+p, ν̄e+D →
e+ + n + n and neutral νe(ν̄e) + D → νe(ν̄e) + n + p weak
currents.

The important problem which has not been jet clar-
ified in the NNJL model is related to the value of the
contribution of the D-wave state to the wave function of
the deuteron. In this paper we fill this blank. In sect. 2 we
calculate the contribution of the D-wave state to the wave
function of the deuteron. We use a relativistically covari-
ant partial-wave analysis developed by Anisovich et al. [8]
for the description of nucleon-nucleon scattering. We ob-
tain the fraction of the D-wave state of the deuteron wave
function relative to the S-wave one equal to ηd = 0.0238.
This agrees well with the value ηd = 0.0256 ± 0.0004
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quoted by Kamionkowski and Bahcall [9]1 who used this
parameter for the phenomenological description of the re-
alistic wave function of the deuteron in connection with
the calculation of the astrophysical factor Spp(0) for the
solar proton burning p + p → D + e+ + νe in the po-
tential model approach. In the Conclusion we discuss the
obtained result.

2 The D-wave state component of the
deuteron

We would carry out the calculation of the value of the
D-wave state contribution to the wave function of the
deuteron in terms of the amplitude of the transition
n+p → D. We show that the neutron-proton pair couples
to the deuteron in both the S-wave state and the D-wave
state with the fraction of the D-wave state agreeing with
low-energy nuclear phenomenology.

In the NNJL model the phenomenological Lagrangian
of the npD interaction is defined by [1]

LnpD(x) =−igV[p̄c(x)γµn(x) − n̄c(x)γµp(x)]D†
µ(x)

+
gT

2MN
[p̄c(x)σµνn(x) − n̄c(x)σµνp(x)]D†

µν(x)

+h.c. , (2.1)

where D†
µ(x), n(x) and p(x) are the interpolating fields

of the deuteron, the neutron and the proton, D†
µν(x) =

∂µD†
ν(x) − ∂νD†

µ(x) is the deuteron field strength. The
phenomenological coupling constant gV is related to
the electric quadrupole moment of the deuteron QD =
0.286 fm2, g2

V = 2π2QDM2
N [1], where MN = 940MeV is

the nucleon mass. The coupling constants gV and gT are
connected by the relation [1]

gT =

√
3
8

gV , (2.2)

which is valid at leading order in the large NC expan-
sion [1].

The amplitude of the transition n + p → D is deter-
mined by

〈kD, λD|LnpD(0)|kp, σp; kn, σn〉 =

M(n(kn, σn) + p(kp, σp) → D(kD, λD))√
2EDV 2EnV 2EpV

, (2.3)

where (ED, kD, λD), (Ep, kp, σp) and (En, kn, σn) are en-
ergies, 4-momenta and polarizations of the deuteron, the
proton and the neutron, respectively, V is a normalization
spatial volume. The wave functions of the initial and final
states of the transition n + p → D are given by

|kp, σp; kn, σn〉 = a†
p(kp, σp) a†

n(kn, σn)|0〉,
〈kD, λD| = 〈0|aD(kD, λD), (2.4)

1 The value ηd = 0.0256±0.0004 was taken by Kamionkowski
and Bahcall from ref. [10].

where a†
p(kp, σp) and a†

n(kn, σn) are creation operators
of the proton and the neutron, aD(kD, λD) is the anni-
hilation operator of the deuteron and |0〉 is a vacuum
wave function. The relativistically invariant amplitude
M(n(kn, σn) + p(kp, σp) → D(kD, λD)) reads

M(n(kn, σn) + p(kp, σp) → D(kD, λD)) = e∗ ν(kD, λD)

×
{

2igV[ūc(kn, σn)γνu(kp, σp)]

−2igT

MN
[ūc(kn, σn)σµνu(kp, σp)] (kn + kp)µ

}
, (2.5)

where ūc(kn, σn) and u(kp, σp) are the bispinorial wave
functions of the neutron and the proton with 4-momenta
kn, kp and polarizations σn, σp; e∗ ν(kD, λD) is a 4-vector
of the polarization of the deuteron with 4-momentum kD

and polarization λD. The 4-momenta kD, kn and kp are
related by kD = kn +kp due to conservation of energy and
momentum.

As has been shown by Anisovich et al. [8], the neutron-
proton densities describing the S- and D-wave states of a
neutron-proton pair are equal to

Ψν(3S1;σn, σp) = [ūc(kn, σn)Sνu(kp, σp)] ,

Ψν(3D1;σn, σp) = [ūc(kn, σn)Dνu(kp, σp)] , (2.6)

where Sν and Dν are relativistically covariant operators
of the projection onto the S-wave and the D-wave state,
respectively [8]:

Sν =
1√
2s

[
γ⊥

ν − 2kν

2MN +
√

s

]
,

Dν =
2

s3/2

[
1
4

(4M2
N − s)γ⊥

ν − (MN +
√

s) kν

]
. (2.7)

Here P = kp + kn, k = 1
2 (kp − kn), s = P 2, P · k = 0 and

γ⊥
ν = γν − P̂

Pν

s
. (2.8)

The neutron-proton densities equations (2.6) are normal-
ized by the condition [8]

1
3

∫
tr{Lµ(k̂p+MN)Lµ(−k̂n+MN)}(2π)4δ(4)(P−kp−kn)

× d3kp

(2π)32Ep

d3kn

(2π)32En
= ρL(s) , (2.9)

where Lµ = Sµ or Dµ, the factor 3 in the denominator of
the l.h.s. describes the number of the states of a neutron-
proton density with a total momentum J = 1, 2J +1 = 3,
and ρS(s) and ρD(s) amount to

ρS(s) =
1
8π

(
s − 4M2

N

s

)1/2

,

ρD(s) =
1
8π

(
s − 4M2

N

s

)5/2

. (2.10)
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In the center-of-mass frame of the neutron-proton pair the
densities equations (2.6) are equal to

Ψ0(3S1;σn, σp) = [ūc(kn, σn)S0u(kp, σp)] = 0 ,

�Ψ(3S1;σn, σp) = [ūc(kn, σn) �Su(kp, σp)] =

1√
2

ϕ†
n(σn)�σϕp(σp) ,

Ψ0(3D1;σn, σp) = [ūc(kn, σn)D0u(kp, σp)] = 0 ,

�Ψ(3D1;σn, σp) = [ūc(kn, σn) �Du(kp, σp)] =

−1
2

ϕ†
n(σn)[3 (�σ · �v)�v − �v 2 �σ]ϕp(σp) , (2.11)

where �v = �k/
√

�k 2 + M2
N and �k are the relative velocity

and 3-momentum of the neutron-proton pair, ϕn(σn) and
ϕp(σp) are spinorial wave functions of the neutron and
the proton, respectively. It is obvious that the densities
equations (2.11) describe the neutron-proton pair in the
S- and D-wave states with a total spin S = 1 and a total
momentum J = 1.

The neutron-proton densities equations (2.11) are nor-
malized by

1
3

∑
σn=±1/2

∑
σp=±1/2

�Ψ †(3S1;σn, σp) · �Ψ(3S1;σn, σp) = 1 ,

1
3

∑
σn=±1/2

∑
σp=±1/2

�Ψ †(3D1;σn, σp) · �Ψ(3D1;σn, σp) =

v 4 =

(
1 − 4M2

N

s

)2

. (2.12)

We would carry out the decomposition of the neutron-
proton densities in the amplitude equation (2.5) into the
densities with a certain orbital momentum at leading or-
der in the large NC expansion [1–3]. This would allow to
consider the neutron and the proton as free particles obey-
ing free equations of motion

ūc(kn, σn)(k̂n + MN) = 0 ,

(k̂p − MN)u(kp, σp) = 0 . (2.13)

In order to express the neutron-proton densities in the
amplitude equation (2.5) in terms of the projection op-
erators equations (2.7), first we have to exclude the term
containing σµν . This can be carried out by using Gordon’s
identity

[ūc(kn, σn)σµνu(kp, σp)]
(kn + kp)µ

2MN
=

−[ūc(kn, σn)γνu(kp, σp)]+
kν

MN
[ūc(kn, σn)u(kp, σp)]. (2.14)

Substituting eq. (2.14) in eq. (2.5) we get

M(n(kn, σn) + p(kp, σp) → D(kD, λD)) =

2i(gV + 2gT) e∗ ν(kD, λD)

×
{

[ūc(kn, σn)γνu(kp, σp)]

− 2gT

gV + 2gT

kν

MN
[ūc(kn, σn)u(kp, σp)]

}
. (2.15)

In terms of Sν and Dν vectors, γ⊥
ν and kν are determined

by

γ⊥
ν =

2
√

2
3

(MN +
√

s)Sν − 2
3

s

2MN +
√

s
Dν ,

kν =
1

3
√

2
(4M2

N − s)Sν − 1
3

sDν . (2.16)

Substituting eq. (2.16) into eq. (2.15) and taking into ac-
count that [ūc(kn, σn)P̂ u(kp, σp)] = 0, we obtain

M(n(kn, σn) + p(kp, σp) → D(kD, λD)) =

4
√

2i(gV + 2gT)MN e∗ ν(kD, λD)

×{[ūc(kn, σn)Sνu(kp, σp)]

+ηd [ūc(kn, σn)Dνu(kp, σp)]} =

4
√

2i(gV + 2gT)MN e∗ ν(kD, λD)

[Ψν(3S1;σn, σp) + ηd Ψν(3D1;σn, σp)] , (2.17)

where ηd describes the fraction of the D-wave state in the
wave function of the deuteron. It is equal to

ηd =
1

3
√

2
2 gT − gV

2 gT + gV
. (2.18)

For the derivation of eqs. (2.17) and (2.18) we have set
s = M2

D and neglected the contribution of the binding
energy of the deuteron in comparison with a nucleon mass
MN. This means that 4M2

N − s = 0 when compared with
M2

N.
Using the relation equation (2.2), the parameter ηd

takes the value

ηd =
1

3
√

2

√
3 −√

2√
3 +

√
2

= 0.0238 . (2.19)

This agrees well with the value ηd = 0.0256± 0.0004 that
was used in low-energy nuclear phenomenology for the de-
scription of the realistic wave function of the deuteron
within the potential model approach [9,10].

3 Conclusion

We have shown that the NNJL model describes well in
agreement with low-energy nuclear phenomenology [10]
such a fine structure of the deuteron as a contribution of
the D-wave state. We have carried out the calculation of
the fraction of the D-wave state to the wave function of the
deuteron at leading order in the large NC expansion [1].
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This has allowed to treat the neutron and the proton as
free particles on-mass shell [1–3] obeying free equations
of motion. To the decomposition of the amplitude of the
transition n + p → D into the neutron-proton quantum
field configurations having certain orbital momenta and
corresponding to the S- and D-wave states, respectively,
we have applied a relativistically covariant partial-wave
analysis invented by Anisovich et al. [8] for the description
of nucleon-nucleon scattering with nucleon-nucleon pairs
coupled in the states with certain orbital momenta.

The theoretical value of the D-wave state fraction in
the wave function of the deuteron ηd = 0.0238 calculated
in the NNJL model agrees well with low-energy nuclear
phenomenology giving ηd = 0.0256 ± 0.0004 [10]. The
former was quoted by Kamionkowski and Bahcall [9] for
the parameterization of the realistic wave function of the
deuteron in connection with the calculation of the astro-
physical factor Spp(0) for the solar proton burning p + p
→ D + e+ + νe. The calculation of the contribution of the
D-wave state fraction of the wave function of the deuteron
in agreement with low-energy nuclear phenomenology tes-
tifies that the NNJL model describes to full extent low-
energy tensor nuclear forces playing an important role in
low-energy nuclear physics on the whole and for the exis-
tence of the deuteron in particular [11].

One of the authors (V. Ivanova) is grateful to her supervisor
Prof. E. A. Choban for discussions.
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